概要:还可结合15:10=15÷10= 这样的具体实例,理解比与分数、除法的关系。“做一做”第1题主要是让学生根据条件写出比并求比值。因为还没有学比的基本性质和化简比,所以不要求化成最简单的整数比。7、运用转化的思想,类推出比的基本性质(1)运用转化的思想,类推出比的基本性质我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们可以先回顾比与分数、除法的关系,复习商不变的性质和分数的基本性质。想一想:比会不会也有自己的性质呢?启发他们用举例的方法验证自己的猜想。可以根据比和除法的关系,用商不变的规律来验证;也可以根据比和分数的关系,用分数的基本性质来验证。最后总结出比的基本性质。(2)会运用比的基本性质来化简比例1有两个小题,第一小题是化简整数比。教材出示了一大一小两面联合国旗,利用比的基本性质将这两个国旗的长和宽化成最简整数比。最后学生就会发现:虽然这两面国旗的长和宽大小不一样,但它们在化简以后的比却是相同的,渗透了按比例缩小的思想。还可以体会到
人教版六年级上册第三单元《分数除法》教材分析,标签:小学六年级教案范文,http://www.laixuea.com还可结合15:10=15÷10= 这样的具体实例,理解比与分数、除法的关系。
“做一做”第1题主要是让学生根据条件写出比并求比值。因为还没有学比的基本性质和化简比,所以不要求化成最简单的整数比。
7、运用转化的思想,类推出比的基本性质
(1)运用转化的思想,类推出比的基本性质
我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们可以先回顾比与分数、除法的关系,复习商不变的性质和分数的基本性质。想一想:比会不会也有自己的性质呢?启发他们用举例的方法验证自己的猜想。可以根据比和除法的关系,用商不变的规律来验证;也可以根据比和分数的关系,用分数的基本性质来验证。最后总结出比的基本性质。
(2)会运用比的基本性质来化简比
例1有两个小题,第一小题是化简整数比。教材出示了一大一小两面联合国旗,利用比的基本性质将这两个国旗的长和宽化成最简整数比。最后学生就会发现:虽然这两面国旗的长和宽大小不一样,但它们在化简以后的比却是相同的,渗透了按比例缩小的思想。还可以体会到化简比的必要性。也就是通过比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于我们分析一些事物现象。第二小题主要是化简分数比和小数比,可以利用比的基本性质先将它们化成整数比,再化成最简整数比,这样就与第一小题的思路一致了。
8、注重引导学生利用比的意义解决实际问题
在小学阶段,比的应用主要有两方面:一个是比例尺,另一个是按比例分配。因为比例尺与比例的联系更为紧密,所以教材把它放在六年级下册进行学习。
(1)比在生活中有着广泛的应用
教学例题之前,可以先复习求一个数的几分之几是多少的实际问题。如六(1)班40名同学参加大扫除,其中 的同学打扫教室, 的同学打扫操场。打扫教室、操场的同学各有多少?写出它们的人数比。
练习后可以作出小结:在实际生活中,有时并不是把一个数量平均分配的,而是按一定的比来进行分配。由此引出课题“比的应用”。
(2)自主探究,进一步体会比的意义
教材中的例2创设了一个日常生活中比较常见的稀释清洁剂浓缩液的问题情境。首先通过一段文字说明稀释瓶上用不同颜色条形标明的比的含义,使学生了解按比配制的实际意义。有条件的班级可以拿一个“安利”的稀释瓶现场进行演示。
(3)解决问题策略的多样化
学生在解答“浓缩液和水的体积分别是多少?”这个问题时,一般有两种方法。一种是先求出每份是多少,再求出几份是多少,也就是把按比例分配转化为整数乘除法的计算。另一种是把比转化成每种成份占总数的几分之几,比如利用1:4先求出浓缩液占总体积的 ,然后再用分数乘法来解决。
例题讲解后,还应让学生说说怎样知道计算的结果是正确的呢?可以从两个方面来进行验证,一是将浓缩液与水的体积相加,看是否等于500毫升,二是把两种液体的比化简,看是否等于1:4.
“做一做”的第1题与例题类似,第2题略有变化:一是把70棵树按要求分成三部分,二是要求“按3个班的人数分配”,没有直接告诉比是多少,增加了难度。
(4)介绍“黄金分割”和有关的“运动研究”
学习完比的应用之后,教师可以组织学生阅读第51页的“你知道吗”。书上用图文并茂的形式介绍了黄金分割的美妙和合理性,说明这个不寻常的比在人类文明进程中所起的重大作用。教师还可以补充一些资料进行介绍。
(5)有关练习的处理
练习十二的第5题,学生在做时很容易出错。往往用3+2+1=6,然后按比例分配,认为这求出的就是长方体的长、宽、高。其实这样求出的是4条长、4条宽和4条高的长度,还应除以4才得到正确的结果。另一种方法是先用120÷4=30(厘米),得到一组长、宽、高的和,然后再按比例分配。