概要:h3>2011年“希望杯”复赛真题及答案详解(六年级) 小学资源网,小学数学答案在下页 /p>1. 原式=3.625+0.(45)-1.(36)=2.625+(1.(45)-1.(36))=2.625+0.(09)=2.715(90)。(这里用括号代替表示循环节)2. 后一部分等于(4×1.5)÷(4+1.5÷3)=4/3,而0.(36)=4/11,所以原式=(2×4/11+4/3)÷(4/11+2×4/3)=(2/11+1/3)÷(1/11+2/3)=17/25。3. 第二个图形比第一个图形多9根火柴,第三个图形比第二个图形多13根火柴,经尝试,第四个图形比第三个图形多17根火柴,而最下面一层有15根火柴的是第8个图形,所以共需要火柴4+(9+13+17+21+25+29+33)=151根。4. 因为奇数个连续自然数之和等于中间数乘以数的个数,所以N能被3和11整除,也就是能被
2017年“希望杯”复赛真题及答案详解(六年级),标签:小学六年级数学试题,http://www.laixuea.comh3>2011年“希望杯”复赛真题及答案详解(六年级)
小学资源网,小学数学答案在下页
/p>
1. 原式=3.625+0.(45)-1.(36)=2.625+(1.(45)-1.(36))=2.625+0.(09)
=2.715(90)。(这里用括号代替表示循环节)
2. 后一部分等于(4×1.5)÷(4+1.5÷3)=4/3,而0.(36)=4/11,
所以原式=(2×4/11+4/3)÷(4/11+2×4/3)=(2/11+1/3)÷(1/11+2/3)
=17/25。
3. 第二个图形比第一个图形多9根火柴,第三个图形比第二个图形多13根火柴,
经尝试,第四个图形比第三个图形多17根火柴,而最下面一层有15根火柴
的是第8个图形,所以共需要火柴4+(9+13+17+21+25+29+33)=151根。
4. 因为奇数个连续自然数之和等于中间数乘以数的个数,所以N能被3和11
整除,也就是能被33整除;
因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数,所以
N等于一个整数加上1/2再乘以12,也就是被12除余6,最小为66。
66可以表示成0到11的和。
5. 4m+5=5n+4,也就是说4(m-1)=5(n-1),如果m-1=5,n-1=4,则m=6,n=5,
但此时n进制中不能出现数字5;如果m-1=10,n-1=8,则m=11,n=9,
符合题意。
6. 1949+60=2009,而2009年是己丑年,所以1949年是己丑年。
7. 每次摸出的结果可能是两个球颜色相同,有3种可能;或颜色不同,也有
3种可能,共6种可能。最不利情况是每种可能各出现4次,则再摸一次就
保证有5次相同,6×4+1=25。
8. 相当于分别从1和1002处以2:5的速度比进行相遇问题,
(1002-1)÷7×2+1=287。
9. 连接两个正方形的"\"的对角线,发现它们平行,所以阴影部分的面积
就等于一个扇形的面积,为15×15×3÷4=675/4。
10. 总共价格为n^2元,最后乙付说明n^2的十位数字为奇数,所以个位为6,
乙最后一次付了6元,应该给甲2元。