概要:个位得9,则个位没有进位,那么,四个数字之和即为十位数字之和与个位数字之和的总和。所以,被盖住的4个数字总和是14+9=23。 6、在图6-6所示的算式中,每个方框代表一个数字。问:这6个方框中的数字的总和是多少? 解答:两个三位数相加的和比2000小9,说明这两个数都大于990,这两个数的个位数字相加得11;所以,这6个方框中的数字的总和应该是9*4+11=47。 7、请你把1,2,3,4,5,6,7,8,9这9个数字分别填到图6-7所示的方框内,要求图中每个数位上的数字第二排比第一排大,第三排比第二排大。问:这样的排列方法共有多少种? 解答:由于 1~9分成三个一组至少有两组和大于10,即有两个数位上要形成进位,而百位不能有进位,所以,个位三个数字之和就应为19,十位三个数字之和应为18, 百位则为8;要使三个不同数字之和为19,只有:2、8、9,3、7、9,4、6、9,4、7、8,5、6、8五种可能,所以,这样的排列方法不少于5 种;分析每一种可能的情况,要使得百位三个数字之和
华罗庚学校思维训练导引-加减法填空格,标签:小学三年级数学试题,http://www.laixuea.com个位得9,则个位没有进位,那么,四个数字之和即为十位数字之和与个位数字之和的总和。所以,被盖住的4个数字总和是14+9=23。
6、在图6-6所示的算式中,每个方框代表一个数字。问:这6个方框中的数字的总和是多少?
解答:两个三位数相加的和比2000小9,说明这两个数都大于990,这两个数的个位数字相加得11;所以,这6个方框中的数字的总和应该是9*4+11=47。
7、请你把1,2,3,4,5,6,7,8,9这9个数字分别填到图6-7所示的方框内,要求图中每个数位上的数字第二排比第一排大,第三排比第二排大。问:这样的排列方法共有多少种?
解答:由于 1~9分成三个一组至少有两组和大于10,即有两个数位上要形成进位,而百位不能有进位,所以,个位三个数字之和就应为19,十位三个数字之和应为18, 百位则为8;要使三个不同数字之和为19,只有:2、8、9,3、7、9,4、6、9,4、7、8,5、6、8五种可能,所以,这样的排列方法不少于5 种;分析每一种可能的情况,要使得百位三个数字之和为8,都只有唯一的排法,所以,这样的排列共有5种可能:
8、将1到9这9个数码分别填入图6-8的9个空格中,要求先填1,再在与1相邻(即左、右或上、下)的格中填2,再在与2相邻的空格中填3,依次类推,……,最后填9,使得加法算式成立。
解答:
9、在图6-9所示竖式的方框内填入4至9中的适当数字,使得第一个加数的各位数字互不相同,并且组成它的4个数字与组成第二个加数的4个数字相同,只是排列顺序不同。
解答:
10、图6-10是一个加减混合运算的竖式,在空格内填入适当数字使竖式成立。