概要: 5) 澳门内地旅客人数神经网络模型的建立 (一)bp网络设计 网络设计是一个综合性问题,它应满足多种不同要求,例如,希望所涉及的网络有较好的推理能力,易于硬件实现,训练速度快等,其中有较好的推理能力是最主要的。一般来说,推广能力决定于3个主要因素,即问题本身的复杂程度、网络结构以及样本量大小。在一般情况下,旅游需求预测研究中样本的数量是一定的,因此可归结为在样本量一定的情况下,如何选择网络规模的问题。 在进行bp网络预测模型设计中,我们主要考虑以下因素:网络的层数、每层中的神经元个数、初始值的选择、学习速率和期望误差。 i)网络的层数已证明:具有偏差和至少一个s型隐含层加上一个线性输出层的网络,能够逼近任何有理函数。所以,本文选择一个3层的bp网络。 ii)每层中神经元的个数输入层和输出层神经元的个数根据解决具体问题的复杂程度而定。为了提高网络训练的精度,可以通过采用一个隐含层,再加上1到2个神经元以加快误差的下降速度即可。因此,本文输入层神经元个数选择为4个,隐含层神经元个数分
旅游需求的调研报告,标签:调研报告怎么写,调研报告格式,http://www.laixuea.com5) 澳门内地旅客人数神经网络模型的建立
(一)bp网络设计
网络设计是一个综合性问题,它应满足多种不同要求,例如,希望所涉及的网络有较好的推理能力,易于硬件实现,训练速度快等,其中有较好的推理能力是最主要的。一般来说,推广能力决定于3个主要因素,即问题本身的复杂程度、网络结构以及样本量大小。在一般情况下,旅游需求预测研究中样本的数量是一定的,因此可归结为在样本量一定的情况下,如何选择网络规模的问题。
在进行bp网络预测模型设计中,我们主要考虑以下因素:网络的层数、每层中的神经元个数、初始值的选择、学习速率和期望误差。
i)网络的层数已证明:具有偏差和至少一个s型隐含层加上一个线性输出层的网络,能够逼近任何有理函数。所以,本文选择一个3层的bp网络。
ii)每层中神经元的个数输入层和输出层神经元的个数根据解决具体问题的复杂程度而定。为了提高网络训练的精度,可以通过采用一个隐含层,再加上1到2个神经元以加快误差的下降速度即可。因此,本文输入层神经元个数选择为4个,隐含层神经元个数分别选择了9、12、15个,输出层神经元个数选择为1个。
iii)初始值的选择由于人工神经网络是一个非线性系统,初始值的选择对于网络学习是否达到局部最小、是否能够收敛以及训练时间的长短都有较大影响。在初始值的选择上一般是使经过初始值加权后的每个神经元的输出值都接近零,这样可以保证每一个神经元的连接权值都能够在它们的s型激活函数变化最大处进行调解。所以,初始值一般选择在(-1,1)之间的随机数。本文的初始值为默认值。
iv)学习速率
对于任何一个网络都对应一个合适的学习速率。学习速率决定每一次循环训练中所产生的权值的变化量。大的学习速率可以导致网络的不稳定,但是小的学习速率又会导致训练时间延长,收敛速度较慢,不能保证网络的误差能最终趋于最小。综合上述考虑,在学习速率的选择上倾向于选择较小的学习速率以保证网络的稳定性,本文选择的学习速率为0.01。
v)期望误差值
期望误差值的确定也是通过网络对不同误差值分别进行训练比较后确定的最适合值。所谓的最适合值是相对于所需要的隐含层的节点数来确定的,一个较小的误差值的获得需要增加隐含层的节点以及训练时间。本文经过不断测试,选择0.0001为期望误差值。
(二)1.网络训练模式的选择
训练网络有两类模式:逐变模式和批变模式。在逐变模式中,每一个输入被作用于网络后,权重和偏置量被更新一次。在批变模式中,所有的输入被应用于网络后,权重和偏置量才被更新一次。使用批变模式不需要为每一层的权重和偏置量设定训练函数,而只需为整个网络制定一个训练函数,使用起来相对方便,因此,本文在进行网络训练时采用批变模式。
2.数据和模型的建立
神经网络模型要求数据具有:a、易获得性b、可靠性c、可测度性。本项研究采用很可靠的官方发表的数据作为分析的数据源(见表1),主要来自于中国统计局网。
用3层bp网络模型对本例旅游需求进行模拟,根据bp网络的映射原理,对于样本集合x和输出y,可以假设存在一映射f。为了寻求f的最佳映射值,bp网络模型将样本集合的输入、输出转化为非线性优化,通过对简单的非线性函数的复合,建立一个高度的非线性映射关系,实现f值的最优逼近。对于本例旅游需求模型的模拟:其输入层结点数(4个神经元):中国内地国民总收入(gdi)、中国内地人口总数(pop)、中国内地国民消费水平(gde)、澳门生产总值(m-gp)。把澳门内地游客量(t)作为输出结点。从而得出3层前馈反向传播神经网络模型。
四.模型结果及分析
1网络训练性能的检查。
不同个数的隐层单元组成的bp网络训练曲线如图1,2,3所示。通过比较发现,中间层神经元个数为9和12 时,网络的收敛速度比较快。
2网络预测性能的考查。
在数据列表中选取1996年到201x年的数据作为网络的测试数据。201x、201x年的游客量检验误差曲线如图4。
其仿真结果令人满意,达到预期的效果。
五.模型的应用与评价(优缺点与改进)
从上面的分析可以看出,3层bp神经网络模型的仿真模拟效果是邻人满意的。可以看出,人工神经网络的拟合精度比较高,主要是基于人工神经网络抗干扰能力强,稳定性好,能自动准确地找出各种输入和输出之间的线性或非线性关系,具有较强的模拟适应能力等特点。在本例对于澳门的内地游客量的旅游预测中bp神经网络模型是一种有效的预测方法。
Tag:调研报告,调研报告怎么写,调研报告格式,报告汇报 - 调研报告